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Motivation
Microstructure and properties:

Material properties are sensitive to 
microscale structure.
Microstructure are inherently 
random but correlated. 
Microstructure variation induces 
property variability.

Importance of uncertainty analysis:
Assess product and process 
reliability.
Estimate confidence level in model 
predictions.
Identify key sources of randomness.
Provide robust design solutions.

Focus: Polycrystalline materials
Solution strategy:

Construct stochastic input model.
Solve the stochastic partial 
differential equations (SPDEs).

3

distribution Stress-strain

Convex hull
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Primary Development
Employ model reduction techniques to construct the reduced-order 
surrogate model of random microstructures based on given samples.
Develop physics-based deterministic solvers to estimate mechanical 
properties/responses of polycrystalline materials based on the 
interrogation of microstructures. 
Investigate property/response variability of polycrystalline materials 
using efficient stochastic simulation methods. 

4

Random microstructure space Reduced spaceProperty space

distribution

Stress-strain

Convex hull
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Problem Description
Problem definition

Given:  
Grain size snapshots constrained by moments (mean size, standard deviation, 

higher-order moments).
Texture snapshots from random process.

Goal:
The variability in material properties and responses
Methodologies
Model reduction to reduce the complexity 

of stochastic input
Nonlinear Model Reduction (isomap) to 

reduce grain size space
Karhunen-Loeve Expansion to reduce 

texture space

Adaptive sparse grid collocation to solve 
stochastic partial differential equations

6

(Z. Li, B. Wen and N. Zabaras, 2010)

Crystal plasticity Taylor model for property 
estimation. 
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Microstructure Representation

7

Microstructures obtained from certain process satisfy some specific experimentally 
determined statistics of grain size distribution.

3D 
data

Pt A

Pt B

Each microstructure that satisfies the given 
statistics of the grain size distribution is a 
point that lies on a manifold embedded in a 
high-dimensional space. 

For microstructures having the same mean grain 
size, a “sorted grain size vector”, whose 
dimension is invariant, can be used to carry the 
grain size information. 

Microstructure A

Microstructure B
Microstructure 
construction

The difference between two 
microstructures is conveniently 
measured by Euclidean distance. 

( )
1/2

2

1

( , )
n

A B
i i

i

D A B GS GS
=

⎛ ⎞= −⎜ ⎟
⎝ ⎠
∑
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2)   For an arbitrary point y ∈ A must find the 
corresponding point             .  Compute the 
mapping from A→M based on k-nearest 
neighbors. 

Nonlinear Model Reduction on Grain Size Feature

8

Given a set of N unordered points belonging to a manifold M embedded in a high-
dimensional space Rn, find a low-dimensional region A ⊂ Rd that parameterizes 
M, where d << n.

(B. Ganapathysubramanian and N. Zabaras, 2008)

1) Geometry can be preserved if the distances between the points are preserved –
Isometric mapping.

2) The geometry of the manifold is reflected in the geodesic distance between point.

x ∈M

1) Compute the low-dimensional representation of a set of N unordered sample points 
belonging to a high-dimensional space

Algorithm:

M⊂ RnA ⊂ Rd

Given N 
unordered 
samples

Compute 
pairwise
geodesic 
distance

Perform MDS 
on this 

distance 
matrix

N points in a low 
dimensional 

space

y x
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Texture Modeling
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The properties of a polycrystalline microstructure are highly dependent on its 
texture: orientation distribution of grains. 

Orientation representation: Rodrigues parameters

1 1 2 2 3 3tan , tan , tan
2 2 2

r w r w r wφ φ φ
= = =

ODF in RF fundamental 
zone of FCC crystal

Texture representation: Grain orientation vector, Orientation Distribution 
Function (ODF)

A discrete form: { }1 1 1
1 2 3 1 2 3( ) , , , , , ,n n nr r r r r r=τ r …

Orientation dependence of slip system (anisotropy in crystalline materials)
,

,

j j
local

j j
local

α α

α α

=

=

m R m

n R n

: 110local
αm

{ }: 111local
αn

12 slip systems in FCC

( ) ( )( )1 1 2
1

j j j j j j
j j= − ⋅ + ⊗ − ×

+ ⋅
R I r r r r I r

r r
where

w w
φ
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Generation of Initial Texture Samples

10

Initial texture samples can be obtained by a sequence of random processing 
simulations with various deformation rate

1 2 3 4

5 6 7 8

1 0 0 0 0 0 0 1 0 0 0 1
0 0.5 0 0 1 0 1 0 0 0 0 0
0 0 0.5 0 0 1 0 0 0 1 0 0

0 0 0 0 1 0 0 0 1 0 0 0
0 0 1 1 0 0 0 0 0 0 0 1
0 1 0 0 0 0 1 0 0 0 1 0

ω ω ω ω

ω ω ω ω

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − + + + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ + + −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

L

1 2 8, , ,ω ω ω… are random coefficients corresponding to tension/compression, 
plain strain compression, shear and rotation. 

The slip systems are updated during deformation as

0

0

( )

( )

e
t

e T
t

t

t

α α

α α−

=

=

m F m

n F n

Therefore the new orientations can be recovered from the rotation part of the 
elastic deformation gradient.  
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Karhunen-Loeve Expansion on Texture Samples
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Random process 
controlled by 
{ }1 2 8, , ,ω ω ω…

Deterministic texture Initial texture samples

0τ 1τ 2τ Nτ

Given N texture examples, construct covariance matrix of these samples

( ) ( )
1

1 ,
1

N
T

i i
iN =

= − −
− ∑C τ τ τ τ

1

1 N

i
iN =

= ∑τ τ

The truncated Karhunen-Loeve Expansion of a random vector     isτ

( ) ( )
1

, , ( ) ( )
d

i i i
i

λ φ η
=

= +∑τ r ω τ r ω r ω

where         are the ith eigenvector and eigenvalue of     , respectively.            are 
a set of uncorrelated random variables satisfying

,i iφ λ C { }( )iη ω

( )( ) ( ) ( )( )0, , , 1, ,i i j ijE E i j dη η η δ= = =ω ω ω …

Texture random field thus transformed to low-dimensional space dη∈R
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Maximum Entropy Estimation of the Distribution of

12

η
To sample new texture, we can sample     instead, and then transform it back to the 
texture space. The distribution of      is needed.

η
η

Maximum Entropy Estimation (MaxEnt): amongst the probability distributions that 
satisfy our incomplete information about the system, the probability distribution that 
maximizes entropy is the least-biased estimate that can be made. In agreement 
with everything that is known but carefully avoids anything that is unknown.

The form of MaxEnt distribution is

( ( )) , 1, 2,...n nE f M n= =x

1
1

( )
( )

*( ) ,

N
Nn

n n
n

f x
f xep x Z e dx

Z

λ
λ=

=

−
−

∑
∑

= = ∫
which maximize the entropy 

1
( ) ( ) log( ( ))

M

i i
i

H p p x p x
=

= −∑
and satisfies constraints

When the uncorrelated constraints are satisfied, the MaxEnt distribution is a 
standard Gaussian distribution 

~ ( , )Nη 0 I
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Inverse CDF Transformation
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Uncorrelated Gaussian random variables are independent in current case. To 
employ Sparse Grid Collocation method, Gaussian distribution needs to be 
transformed to a uniform hypercube [0,1]d. 

The cumulative distribution function (CDF) for standard Gaussian is
1( ) 1
2 2i

i
i erfη

ηη
⎡ ⎤⎛ ⎞Φ = +⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦

which is uniformly distributed in [0,1].
Given a point in the hypercube            , we can also find a corresponding point      
in the original distribution by

[0,1]d∈ζ

1( ), 1, ,i i i dη ς−= Φ = …

This process transforms a node in sparse grid back to a point in Gaussian 
distribution, and it can be further recovered to a texture realization
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Adaptive Sparse Grid Collocation

14

Sparse grid collocation is an effective method to solve SPDEs. It approximates the 
multi-dimensional stochastic space using interpolating functions on a set of 
collocation points. The collocation method collapses the multi-dimensional problem 
to solving M (M is the number of collocation points) deterministic problems. 

| |
( , ( )) ( ) ( ( ))

q
u x x aω ω ω

≤

= ∑ ∑ i i
j j

i j
ξ ξ

Hierarchical 
surplus

Multi-linear 
basis functions

Stochastic 
process

The interested function can be approximated by

The mean of the random solution is evaluated as

| |
( ( )) ( ) ( )

L
q

E u t x a dω
≤

= ⋅∑ ∑ ∫i i
j j

i j
ξ ξ

In the context of adaptivity, new support 
nodes are added to the hypercube only if the 
error indicator is larger than a threshold ε:

2

2
1

( ) ( )
L L

d L

x a d

E

ω
γ ε

− −

⋅
= >

∫i i
j j

i
j

i

ξ ξ

(X. Ma and N. Zabaras, 2009)
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Deterministic Solver

15

Material: FCC nickel
Deterministic solver: rate-independent crystal plasticity with Taylor homogenization.

Homogenized effective stress and strain

0

3 ' '
2

2 d
3

eff

t

eff t

σ

ε

=

= ∫

T T

D D

i

i

1 d

1 d

V

V

V
V

V
V

= =

= =

∫

∫

T T T

D D D

where

0 bκ κ αμ ρ− =

where dislocation density changing rate 1 2
1

g

k k
L b

α

κ

ρ ρ ρ γ
⎧ ⎫⎪ ⎪= + −⎨ ⎬
⎪ ⎪⎩ ⎭

∑

Upon calculating the incremental shear strain, elastic and plastic deformation 
gradient can be updated and Cauchy stress is computed

e e∗ =T C E1{[det ] }e e eT− ∗=T F F T F with

(L. Anand and M. Kothari, 1996; A. Acharya and A.J. Beaudoin, 2000)

e p≡F F F
Hardening law:
Decomposition of deformation gradient:

If the resolved shear stress is larger than the slip resistance             , the slip 
system is active.

α ατ κ>
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Investigating Property Variability Due to Microstructure Uncertainties
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START: Extract microstructural features

Microstructure space Low-dimensional space
Property variability Low-D points

Low-D space

Interpolcation
Construct 

low-D 
space

Model 
reduction

Feature 
reconstruction

Reconstruct microstructures

Property convex hull

Property distribution

S
ol

ve
 S

P
E

D
s

O
bt

ai
n 

P
ro

pe
rti

es

END

Database

Sample from 
hypercube

Map to 
hypercube

Unit hypercube
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Numerical Examples
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Grain size sample constraints: 

Microstructure domain: 1mm x 1mm x 1mm cube containing 54 grains. 

Texture generation:

1 2

0 0 0 0 1 0
0 1 0 1 0 0
0 0 1 0 0 0

ω ω
−⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

L

1
1 2, ~ [ 0.002, 0.002]secω ω −−with

Run the simulation for 500 seconds.

Examine the effective stress variability of polycrystalline 
microstructures satisfying different constraints subjected to 
compression.

1

0.5 0 0
0.002sec 0 0.5 0

0 0 1

−

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎣ ⎦

L

(1) Mean volume 0.0185 mm3

(2) 2nd moment 3.704x10-4mm6

(3) 3rd moment 8.637x10-6mm9

1 2 3

0.5 0 0 0 0 0 0 1 0
0 0.5 0 0 1 0 1 0 0
0 0 1 0 0 1 0 0 0

ω ω ω
−⎡ ⎤ ⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

L(b)

(a)
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Numerical Examples
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1st moment
1st and 2nd moments
1st, 2nd, and 3rd

momentsEffective 
stress 
distribution at 
strain 0.2

1st moment ((1)+(a)) 1st and 2nd moments ((2)+(a)) 1st, 2nd, and 3rd moments ((3)+(a))

Grain size effect

((1)+(b)) ((1)+(a))

1 2

0 0 0 0 1 0
0 1 0 1 0 0
0 0 1 0 0 0

ω ω
−⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

L1 2 3

0.5 0 0 0 0 0 0 1 0
0 0.5 0 0 1 0 1 0 0
0 0 1 0 0 1 0 0 0

ω ω ω
−⎡ ⎤ ⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

L
Texture effect

Dim=3+2 Dim=3+2

Dim=3+4 Dim=3+2

Dim=2+2



Materials Process Design and Control Laboratory
Cornell University

Elastic Properties Variability

19

Young’s modulus distribution

Shear modulus distribution

Bulk modulus distribution

Property convex hull

10000 samples
(1)+(a)
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Overview

Nickel-based superalloys are widely used in components working in 
harsh environment, e.g. disks and blades of turbo engines. 

They have high resistance to creep and fatigue at high temperature. 

The performance of nickel-based superalloys depends on their 
underlying microstructures: grain topology, texture, and volume 
fraction of γ’ phase. 

We are interested in the variability of fatigue properties of superalloy
microstructures due to uncertainties in texture, grain size, and 
volume fraction of γ’. 

Principal component analysis (PCA) based model reduction 
techniques are adopted for reducing the complexity of the input 
space.

21



Materials Process Design and Control Laboratory
Cornell University

Problem definition
Given:  

Grain size snapshots constrained by the mean 
size and sampled from lognormal distribution.

Texture snapshots from random process. 
Volume fraction of γ’ precipitates.

Goal:
The variability of fatigue resistance due to 

microstructure uncertainties.
Find the feature(s) dominate the variability of 

fatigue resistance

Methodologies
PCA and KPCA model reduction to 

reduce the complexity of stochastic input.
PCE to map reduced coordinates to a 

known distribution. 
Adaptive sparse grid and Monte Carlo 

collocation to solve stochastic partial 
differential equations

22

(Bin Wen and N. Zabaras, 2012) 

Problem Definition
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Stochastic Input Space
A probability space               with sample space     , corresponding to 
all microstructures resulted from certain random process,            , 
being the σ-algebra of subsets in     , and                   , as the 
probability measure. 

Each sample            is a random microstructure which can be 
described by a discretized representation

The input space information is only given as a set of samples

The variability of microstructure sensitive property                  of the 
given input space is interested. 

It is necessary to construct the input space that has the same 
statistical properties with the given samples. Since the input space is 
high-dimensional, model reduction is adopted to construct a low-
dimensional surrogate space. 

23

( ), ,F PΩ Ω
2F Ω⊂

Ω : [0,1]P F →

ω∈Ω
1( ) ( , , ) :T M

My yω = Ω→ ∈y Y… R

, 1, ,i i N=y …

( )A A= y
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PCA/KPCA

In general, the components of stochastic input              are not 
linearly related. 
Direct linear PCA attempting to fit a linear surface such that 
reconstruction error is minimized is not very appropriate to find the 
surrogate space. 
Solution: nonlinearly map the given samples to a feature space    , 
where PCA performs well. 

If PCA, 

24

M∈y R

F

y ( )=x Φ y

: ,M FΦ → →y xR
( ) =Φ y y
(B. Schlkopf, A. Smola and K.-R. Muller, 1998; X. Ma and N. Zabaras, 2011)



Materials Process Design and Control Laboratory
Cornell University

PCA/KPCA Formulation

25

( )= −Φ Φ y Φ

Covariance matrix in the feature space:

1

1 ( ) ( )
N

T
i i

iN =

= ∑C Φ y Φ y

=KU ΛU

Multiply with       and reform the eigenvalue problem:
1 1

( )
F FM M

i i i i i
i i

zλ η
= =

= + = +∑ ∑Φ y V Φ V ΦKL expansion:

( ): ( ) ( )ij i jK = ⋅K Φ y Φ y

1 1
( ) ( )

N N
ij

i ij j j
j j i

α
α

λ= =

= =∑ ∑V Φ y Φ y

λ=CV VEigenvalue problem:

iΦ

where

1[ , , ]N=U α α…

( )1, , Ndiag λ λ=Λ …

The eigenbasis of the covariance matrix     is projected to the given 
samples by

C
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Random sample    in the reduce space (constructed by   ), we can obtain 
its corresponding high-dimensional counterpart.

PCA/KPCA Formulation

26

1 1 1
( ) ( )

N r N

i i i i i i
i i i

z z β
= = =

= + ≈ + =∑ ∑ ∑Φ y V Φ V Φ Φ yAny sample in F:

1
N

= +β AZ 1 1
1 [ , , ]T

r rN
⎛ ⎞= = −⎜ ⎟
⎝ ⎠

A HU I 11 α α…

( ) ( )
1 1

1( ) ( ) ( ) , ,
N N

T T T
i i ij j ij j i y i y i

j j
z k

N
α α

= =

= ⋅ = ⋅ = = = −∑ ∑V Φ y Φ y Φ y y y α k α Hk α HK1

1[ , , ]T
rz z=Z …

Reduced representation: 

( )
2

2, exp
2

i j
ij i jK k

σ

⎛ ⎞−⎜ ⎟= = −
⎜ ⎟
⎝ ⎠

y y
y yGaussian Kernel:

In PCA ( ),i j i jk = ⋅y y y y

Construct reduced-order space by initial samples iz

ξ

where

iz

Only the dot products of vectors in the feature 
space are required, while the explicit calculation 
of the map is not necessary.
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Polynomial Chaos Expansion (PCE)
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Map the reduced space to a known distribution. 

0
( ), 1, ,

p

i ij j i
j

i rξ γ ψ η
=

= =∑ …

Gaussian-Hermite PCs

( )

2

2
2

( ) 1 ( )e d , 1, , , 0, ,
2 !( )

i
i j i

ij i j i i

j i

E
i r j p

jE

ηξψ η
γ ξψ η η

πψ η

∞ −

−∞

⎡ ⎤⎣ ⎦= = = =
⎡ ⎤
⎢ ⎥⎣ ⎦

∫ … …

1( ),
i ii i i i F Fξ ηξ η −= Γ Γ ≡

Mapping through CDF
To compute the integral, a map between     and      is needed.iηiξ

i
Fξwhere      and       are the CDFs of the two random variables, respectively. 

i
Fη

Uniform-Legendre PCs

( )
1

2 1

( ) 2 1 ( )d , 1, , , 0, ,
2( )

i j i
ij i j i i

j i

E j i r j p
E

ξψ η
γ ξψ η η

ψ η −

⎡ ⎤ +⎣ ⎦= = = =
⎡ ⎤
⎢ ⎥⎣ ⎦

∫ … …

Each independent random variable      can 
be expanded on to an one-dimensional 
polynomial chaos basis       of degree p.

iξ

jψ

(D. Xiu and G.E. Karniadakis, 2002; G. Stefanou, A. Nouy and A. Clement, 2009)
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Pre-imaging

28

Draw random sample      η

Map to ξ

Construct high-D 
representation ( )Φ y

Recover microstructure feature y

PCE

PCA/KPCA

Pre-imaging

K-nearest neighbor:
1

1

1

ˆ
1

K
ii

i

K

i
i

d

d

=

=

≈ =
∑

∑

y
y y ( )

( )

22 2 2

2 2

ˆˆ ˆ ˆ( , ) 2 ln 1 0.5 ( ( ), ( ))

2 ln 1 0.5 ( ( ), ( ))

i i i i i

i i

d d

d

σ

σ

= − = − −

≈ − −

y y y y Φ y Φ y

Φ y Φ y

y ( )Φ y

?

Sample    , and find the input realization   , approximately. η y

Gauss kernel:

2 1 2
i

T T
id = + − yβ Kβ β k

1( )−Φ Y
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Crystal Plasticity Constitutive Model

The superalloy microstructure is modeled as a homogenized single 
crystal with effective properties.

Taylor model: all grains have the same deformation. No realistic 
microstructure is required. Computationally efficient. 
Finite element model: the boundary nodes have the same 
deformation while heterogeneous deformation is allowed within the 
microstructure. Realistic microstructure. More accurate but less 
efficient. 

29

Secondary γ’

Tertiary γ’

Explicit structure Homogenized model
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Homogenized Constitutive Model

The model is for polycrystalline IN100. All grains are assumed to be 
the mixture of γ matrix and γ’ precipitates. The same set of 
constitutive equations apply to all grains. 
Three types of γ’ precipitates: primary, secondary, and tertiary. 
The effect of γ’ precipitates is taken into consider as constitutive 
parameters (volume fraction, mean particle size, etc.).
Rate dependent flow rule:

Hardening law:
where
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(C.P. Przybyla and D.L. McDowell, 2010)
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Homogenized Constitutive Model

Dislocation density evolution:

Back stress evolution: 
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Fatigue indicator parameters (FIPs) are 
employed to measure the fatigue properties 
of nickel-based superalloy. 
Cumulative plastic strain per cycle

Cumulative net plastic shear strain

The Fatemi-Socie parameter

Maximum range of cyclic plastic shear strain

2 2d : d
3 3
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⎝ ⎠

maximum range of cyclic 
plastic shear strain 

(M. Shenoy, J. Zhang, and D.L. McDowell, 2007)
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Numerical Example: Taylor Model vs. FEM
Polycrystalline microstructures with homogenized grains 
implemented in the Taylor model and FEM. 
Initial input samples: 1000 randomly generated microstructures 
composed of 54 grains represented by grain size and texture 
features. 

32
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Generation of Initial Samples

33

Initial texture: obtained by a sequence of random processing simulations 
with various deformation rate

1 2 3

1 0 0 0 0 0 0 1 0
0 0.5 0 0 1 0 1 0 0
0 0 0.5 0 0 1 0 0 0

ω ω ω
−⎡ ⎤ ⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

L

1 2 3, ,ω ω ω are random coefficients corresponding to tension/compression, 
rotation, and shear, respectively. 
The slip systems are updated during deformation as 0

0

( )

( )

e
t

e T
t

t

t

α α

α α−

=

=

m F m

n F n
Initial grain sizes: obtained by sampling in a lognormal distribution. The 

mean grain size is fixed at 0.0265 mm. 

The above process is only for generating data having inherent 
correlation. After that, the only accessible information of the input is the 
data. No knowledge of how they are generated is assumed. 

22

ln( )1( ) exp
22
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d
p d

d

μ
σπσ

−⎛ ⎞
= −⎜ ⎟

⎝ ⎠ 0.025σ =

2exp( / 2) 0.0265grd μ σ= + =
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PCA/KPCA on Texture

34

Reconstruct features
( reduced from 162-dim to 4dim)

Energy spectrum

10-old cross 
validation

1

ˆ1 testN
i i

itest i

Err
N =

−
= ∑

y y
y

1

1

r

i
i
N

j
j

Energy
λ

λ

=

=

=
∑

∑

4 components in PCA:91.8%
4 components in KPCA:81.5%

1 2 30, 0.42, 0.11p p pf f f= = = 0.7% ~ 0.7%ε = − 10.001sε −=
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PC expansion on reduced random variables

35

0

( ), 1, ,
p

i ij j i
j

i rξ γ ψ η
=

= =∑ …

PCA

KPCA

Uniform-Legendre PCs give better representation of the reduced random variables
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FIPs

36

MC-PCA

MC-KPCA
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FIPs
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ASGC: level 8, converge to err=0.0001

ASGC-PCA

ASGC-KPCA
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Convex Hull
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Grain Size Variation

The reduced dimensionality is high but the caused variation in FIPs is small. 

Fix texture and volume fractions of γ’ particles, while vary the grain sizes 
(sampled from the lognormal distribution). 

The reduced dimensionality is taken to be 10, which captures 91.2% of the 
total energy by PCA, and 89.2% of the total energy by KPCA. 

Distributions of maximum FIPs extracted from the 1000 initial sample 
microstructures: the texture dominate the FIPs variability.
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Combined Volume Fraction and Texture Variation 
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Outline

Introduction and motivation

Uncertainty quantification at a single material point

Investigating mechanical response variability of single-phase 

polycrystalline microstructures

Investigating variability of fatigue indicator parameters of two-

phase nickel-based superalloy microstructures

Uncertainty quantification of multiscale deformation process

An efficient image-based method for modeling the elasto-viscoplastic

behavior of realistic polycrystalline microstructures

Conclusion and future research
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Multiscale Model Reduction

Motivation: Microstructure features are location specific. Traditional 
construction of reduced-order stochastic models for one point cannot 
see the microstructure correlation between points in the macroscale. 
The location dependence causes the “curse of dimensionality” in 
stochastic multiscale simulations.

Goal: Consider the correlation of microstructures between different 
points. Separate random variables from coordinates. Dramatically 
reduce the dimensionality of the stochastic multiscale input. 

42

Grain structures 
of a nickel-base 

superalloy turbine 
disk having dual-
microstructures

(B. Wen and N. Zabaras, 2012)
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Bi-orthognoal Decomposition

43

Start from realizations of the microstructure random field (A) 
varying in both micro (s) and macro-scale (x):
Project A to a set of bi-orthogonal bases

( , , ) :X Sω × ×Ω→A x s R

1

1

( , , ) ( , ) ( , , )

( , ) ( ) ( , )

( , ) ( ) ( , )

i i i
i
d

i i i
i

ω ω

ρ ω

ρ ω

∞

=

=

= +

= + Ψ

≈ + Ψ

∑

∑

A x s A x s A x s

A x s s Φ x

A x s s Φ x

( )( , ) : ( , , ) p dω ω ω
Ω

= ∫A x s A x s

The inner product in the microstructure domain is denoted as
( ), : ( ) ( )i j i j dΨ Ψ = Ψ Ψ∫S s s s

The inner product in the spatial domain is defined as

{ }, : ( , ) ( , )i j i j dω ω= ⋅∫XΦ Φ Φ x Φ x x

The orthogonality conditions:
( ),i j ijδΨ Ψ = { },i j ijδ=Φ Φ

XY

Z

(D. Venturi, X. Wan and G.M. Karniadakis, 2008; B. Kouchmeshky and N. Zabaras, 2010)
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Bi-orthognoal Decomposition

44

if realizations of the random field are given as                  , where 1, , ri n= …( , , )i iωA x s

By minimizing the distance between the Karhunen-Loeve expansion 
and the random field, the microscale basis can be computed by

{ }1( ) ,i i
iρ

Ψ =s A Φ

The macroscale basis is obtained through orthogonality condition

( ) ( )1, , , ( )i i
i

dω ω
ρ

= Ψ∫SΦ x A x s s s

The eigenvalue problem in K-L expansion can be defined as
( )( ) , ' ( ')d 'i i iS

Cρ Ψ = Ψ∫s s s s s

The covariance matrix is
( ) ( ) ( ){ }, ' , , , , ',C ω ω=s s A x s A x s
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1 1 1
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elr
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j i ir
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ξ ξ
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Second Level KLE

45

The random field                   is decomposed into a set of microscale
modes           and spatial-random coupled modes                . 

is still high-dimensional.  By assuming independence of 
these macromodes, the random variable can be further separated 
from spatial modes via a second level KLE

( , , )ωA x s
( )iΨ s ( ),i ωΦ x

The dimensionality of the reduced representation of the ith
macromode is     . The total dimensionality     of the reduced 
space of feature                   is then the sum of all    .

d

i
i

r r=∑
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Polynomial Chaos Expansion

46

After performing the second level KLE on macro modes               , 
we separate the randomness from spatial coordinates. The random 
term             can be mapped to well-shaped distribution by 
polynomial chaos expansion (PCE):  

( )j
i ωφ

( ),i ωΦ x

( ) ( )( )j jk k j
i i i i

k
ω ζ ω= ϒ∑φ γ

In the current work, we choose       to be uniformly distributed 
between -1 and 1. Therefore,       are Legendre polynomials. The 
coefficients of the PCE can be computed by

( ) ( )
( )( )

( ) ( )1

2 1

2 1
2

j j k j
i i i ijk j j k j j

i i i i i i
k j
i i

k d
ζ ζ

ζ ζ ζ
ζ

−

ϒ +
= = ϒ

ϒ
∫
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γ φ

The choice of polynomial      of random variable       that follows 
well-shaped distribution (e.g. Gaussian or Uniform) depends on the 
specific distribution of      .  
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Non-intrusive Mapping

is non-linearly mapped to      through cumulative density 
function (CDF) and based on the given realizations:

Two assumptions were made during this Bi-orthogonal KLE-second 
level KLE-PCE process:

Assumption 1: the random variable     is independent from microscale
and macroscale coordinates (x and s). 
Assumption 2:                        are independent from each other.
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Procedure
Training: establish the mapping between microstructure space and 
reduced-order space.
Testing: sample in the low-D space and reconstruct real microstructures

48

Bi-orthogonal KLE

Second-level KLE
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Initial Samples

The input to the stochastic simulation is a set of ingot samples whose 
microstructures at different points are random but correlated. 
The input ingots are resulted from pre-processes. 
To obtain the random input ingots having correlated microstructures, 
we generate them through a random deformation process. 

A set of workpieces whose surfaces are randomly curved are pushed 
against a flat die. 
The microstructures at all points of all the initial ingots are assumed to be 
identical. 
The resulted microstructures at different points of different ingots are 
distinct due to the random shape of the initial ingots. 

49
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Initial Surface

The surface of initial workpieces are described by a degree 6 Bezier 
curve 

are selected to be uniformly distributed in                .

1000 initial samples are generated. The resulted microstructures (or 
more precisely, texture) are the input to the stochastic simulation. 
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Deterministic Solver

51

Each Gauss point in the macroscale is linked to a microstructure.
The deformation of the microstructure is controlled by the local 
deformation gradient in the macroscale via Taylor hypothesis.
The mechanical properties of the point is evaluated on the 
microstructure by crystal plasticity constitutive and homogenized. 
Homogenization:

1

1 d
n

V
V +

= ∫T T
B

T d
d
T
F

F

Mean

Standard deviation

1000 initial samples
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Stochastic Input

Mesh of the macroscale workpiece: 10x6 quadrilateral elements.
Microstructure representation: grain sizes and orientations of 20 
grains. 
Uncertainty source A: random textures

52

The total dimensionality of 
the stochastic input: 

10x6x4 x 20x3 = 14400. 
The first 3 macro modes are 

preserved which captures 
around 95% of the total energy.

The expectation of macro 
modes energy is identical to 
the corresponding eigenvalue. 
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The Second Level KLE

The macro modes are further decomposed by the second level KLE.
Each decomposition preserves more than 95% of the total energy of 
the macro mode. The dimensionality of reduced macro modes are           

, respectively. The dimensionality of the reduced 
space of the microstructure feature is therefore                           . 
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PDFs of Reduced Representations
The PDFs of reduced microstructure representations      obtained 
from the model reduction on the given 1000 samples are constructed 
by kernel density. 
The PDFs of reconstructed      through PCE using 10000 random 
samples from the uniform distribution U(-1,1) are also plotted. 
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Reconstruction vs. Test Sample

55

Take an arbitrary microstructure realization and project it to the 
reduced surrogate space. We can reconstruct the microstructure 
using its reduced representation. 
The first step is to reconstruct its macro modes through PCE-KLE.
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Reconstructed Mean
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Initial samples

4032 MC 
reconstructed 
samples

8064 MC 
reconstructed 
samples
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Reconstructed STD
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Initial samples

4032 MC 
reconstructed 
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8064 MC 
reconstructed 
samples
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Increase Dimensionality of the Reduced Space
Next, we increase the dimensionality of the reduced space to 18, so 
that the reduced representations capture 99% of the total energy of 
each macro mode: 
The reconstructed macro modes of a single texture realization is 
more “realistic” than the previous 8 dimensional representation.
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Convergence with Increasing Dimensionality

59

Increase the dimensionality of the reduced space to 18 (3+7+8), which captures 
99% of the total energy of each macro mode.

standard 
deviation

mean mean 
difference
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difference
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Statistics of One Point

60

(a)

(b) (c)

(d)

Equivalent stress

Equivalent strain

Equivalent strength
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Investigating mechanical response variability of single-phase 

polycrystalline microstructures

Investigating variability of fatigue indicator parameters of two-

phase nickel-based superalloy microstructures

Uncertainty quantification of multiscale deformation process

An efficient image-based method for modeling the elasto-viscoplastic

behavior of realistic polycrystalline microstructures
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Problem Definition

Goal: Accurately and efficiently investigate effective and local mechanical 
properties/response of polycrystalline materials based on realistic 
microstructure image.

Solution strategy: Green function method in combination with fast Fourier 
transform solving governing equations. 
Merit: no complex meshing, no inversion of huge matrix, consider both 
intergranular and intragranular interactions, take image as input. 
New: elasto-viscoplastic constitutive, application to fatigue properties, multigrid
strategy. 
Local mechanical response of a heterogeneous medium can be calculated as 
a convolution integral between a linear homogeneous reference medium 
Green function and the actual heterogeneous field. 
Fast Fourier transform is introduced to reduce convolution integrals in real 
space to simple products in Fourier space. 
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(B. Wen and N. Zabaras, 2012)
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The governing equations are equilibrium equations and boundary 
conditions. An separate formulation is proposed for solving crystal 
elasto-viscoplastic problems, where elastic and plastic responses are 
computed separately. 
Elastic problem:

Elasto-plastic problem:

Solution strategy: 
Solve the two sets equations for elastic and plastic responses separately.
Represent a local quantity by the mean plus fluctuation. 
Reform the equilibrium equation using Green function method.
Transform reformed equations to Fourier space through FFT.
Update strain related quantities in Fourier space then transform them 
back to real space.
Update stress related quantities in real space following constitutive laws.

Equilibrium (stress rate divergence): 

Equilibrium (stress divergence): 

Governing Equations

, 0ij j =σ
Incompressibility: 0kkε =

Periodic boundary conditions.
, 0ij j =σ

Periodic boundary conditions.
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Stress rate and polarization fields:

Equilibrium equation:

Solve the equilibrium equations using Green function method: 

Elasticity: Green Function Method

0( ) : ( ) ( )e e e= +σ x C ε x φ x

0 0( ) ( ) : ( ) ( ) : ( )e e e e e= − = −φ x σ x C ε x σ x C ε x
0
e e

h
=C C

, 0 , , 0 , , 0e e e e e e
ij j ijkl kl j ij j ijkl k lj ij jC C vε ϕ ϕ= + = + =σ

Assume solutions: 3
( ') ( ')d 'e e e

i im mv G f= − −∫ x x x x
R ,( ) ( )e e

m mn nf ϕ=x x

3 30 , ( ') ( ')d ' ( ') ( ')d ' 0e e e e
ijkl km lj m im mC G f fδ δ− − + − =∫ ∫x x x x x x x x

R R

Substitute solutions into equilibrium equations:

3 0 , ( ') ( ') ( ')d ' 0e e e
ijkl km lj im mC G fδ δ⎡ ⎤− − + − =⎣ ⎦∫ x x x x x x

R
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0 , ( ') ( ') 0e e
ijkl km lj imC G δ δ− − + − =x x x xIf           is arbitrary( ')e

mf x

As a result: 3 ,( ') ( ')d 'e e e
i im mj jv G ϕ= − −∫ x x x x

R

3, , ,( ') ( ')d 'e e e
i k im k mj jv G ϕ= − −∫ x x x x

R (R.A. Lebensohn, 2001)
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Elasticity: Green Function Method and FFT

3 , ( ') ( ')d 'e e e
i im j mjv G ϕ= −∫ x x x x

R

3, , ( ') ( ')d 'e e e
i k im kj mjv G ϕ= −∫ x x x x

R
Transform to Fourier space:

ˆ ˆ ˆ( ) i ( ) ( )e e e e
i i j im mjFFT v v Gξ ϕ= = ξ ξ . .

ˆ ˆ ˆ( ) ( ) ( )e e e e
i k i k k j im mjFFT v v Gξ ξ ϕ= = − ξ ξ

,
ˆˆ ( ) ( ) ( )e e e

ijkl j l ik ik jlG Gξ ξΓ = − ⇔ξ ξ ξGreen operator in Fourier space:

Integrate by parts and assume 
boundary terms vanish
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0
ˆ ( )e e

l j ijkl km imC Gξ ξ δ= −ξ

Define

Governing equation in Fourier space:

0
e e
ik l j ijklA Cξ ξ= ( )1ˆ ( )e e

ij ij
G A −= −ξ

Velocity gradient fluctuation Strain rate and spin fluctuation

,
ˆ ˆ ˆ( ) ( ) ( )e e e
i j ijkl klv ϕ= Γξ ξ ξ

,
ˆ0 ( ) 0e
i jand v∀ ≠ =ξ 0

( ), ,( ) 1 2 ( ) ( )e e e
ij i j j iv vε = +x x x

( ), ,( ) 1 2 ( ) ( )e e e
ij i j j iv vω = −x x x

Solutions in Fourier space:
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Viscoplasticity: Green Function and FFT Approach
Stress and polarization fields:

Equilibrium equation:
Equilibrium equation in Green function form:

Equilibrium equation in Fourier space: 

0( ) : ( ) ( )p p p= +σ x C ε x φ x

0 0( ) ( ) : ( ) ( ) : ( )p p p p p= − = −φ x σ x C ε x σ x C ε x

1
0
p p

h

−=C M

, 0 , , 0 , , 0p p p p p p
ij j ijkl kl j ij j ijkl k lj ij jC C vε ϕ ϕ= + = + =σ

0 , ( ') ( ') 0p p
ijkl km lj imC G δ δ− − + − =x x x x

0
ˆ ( )p p

l j ijkl km imC Gξ ξ δ= −ξ 0
p p

ik l j ijklA Cξ ξ=( ) 1ˆ ( )p p
ij ijG A

−
= −ξ

ˆ ˆ ˆ( ) i ( ) ( )p p p p
i i j im mjFFT v v Gξ ϕ= = ξ ξ . .

ˆ ˆ ˆ( ) ( ) ( )p p p p
i k i k k j im mjFFT v v Gξ ξ ϕ= = − ξ ξ

Velocity gradient fluctuation Strain rate and spin fluctuation

,
ˆ ˆ ˆ( ) ( ) ( )p p p
i j ijkl klv ϕ= Γξ ξ ξ

,
ˆ0 ( ) 0p
i jand v∀ ≠ =ξ 0
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( ), ,( ) 1 2 ( ) ( )p p p
ij i j j iv vε = +x x x

( ), ,( ) 1 2 ( ) ( )p p p
ij i j j iv vω = −x x x

Solution:
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Elasto-viscoplastic Solution

The total velocity gradient combining both elastic and plastic parts at 
a single point is:

Total strain rate:

Elastic strain rate is computed following a Newton-Raphson process

Plastic strain rate:

Stress and stress rate:

Polarizations for the next iteration:
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( ) ( ) ( )e p∇ =∇ +∇ +∇v x V v x v x

( ), ,( ) 1 2 ( ) ( )ij i j j iv vε = +x x x

( )
1

1
d( ) ( ) ( )
d

e e e
i i i ie

−

+

⎡ ⎤
= − ⎢ ⎥

⎣ ⎦

Fε x ε x F ε x
ε

( ) ( ) ( )p e= −ε x ε x ε x ( )1( ) ( ) ( )
3

p p ptrace= −ε x ε x ε x

( ) ( ) : ( )e e=σ x C x ε x ( ) ( ( )) : ( )p p=σ x C σ x ε x

0( ) ( ) : ( )e e e= −φ x σ x C ε x

0( ) ( ) : ( )p p p= −φ x σ x C ε x

( )( ) ( ) ( ) ( )e e p= + − =F ε x ε x ε x ε x 0

4 4 4
d d dd d d : d :

d d d d d d

e p p
p e
te e e e t= + = + = +

ε ε εF σ σI I M I C
ε ε ε σ σ ε
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Algorithm-Basic Formulation
Basic formulation: based on the exact expression of Green function 
for linear elastic, homogeneous reference material.

For each time step, the iterative algorithm can be:
(1) At the beginning of the 1st iteration, give an initial guess to the total velocity gradient:

. Then compute initial elastic and plastic strain rates,          and          , as 
well as stress          and stress rate          , using elasto-plastic constitutive relations.

(2) Compute the elastic and plastic polarization fields,         and          , for the ith iteration. 
(3) Transform the polarization fields to Fourier space via FFT:

(4) Compute velocity gradient fluctuations in the Fourier space at the (i+1)th iteration:

(5) Transform velocity gradient fluctuations back to the real space through inverse FFT:

(6) Compute strain rate, strain, and stress fields using updated velocity gradient.

(7) Check the convergence

If not converged, repeat steps (2) to (7).  

0
1 ( ) ( )n n+ ∇ = ∇v x v x

( )i eφ x

( )ˆ ( ) ( )i e i eFFT=φ ξ φ x

( )1 1
1 1

ˆˆ ˆˆ( ) ( ) : ( ) ; 0, and ( ) 0i e e i e i e
n nsym+ +
+ +∇ = ∀ ≠ ∇ =v ξ Γ ξ φ ξ ξ v 0

( )1 1 1
1 1

ˆ( ) ( )i e i e
n nFFT+ − +
+ +∇ = ∇v x v ξ

1/2 1/22 21 1

11

ˆdiv( ) ( )
e=

ˆ ( )

i i

ii

+ +

++
=

σ ξ σ ξ

σ 0σ

i
1

1

e- e
e

i i

iδ
+

+= Equilibrium 
error
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0
1 ( )e

n+ ε x
0
1 ( )p

n+ ε x
0
1 ( )n+ σ x

0
1 ( )n+ σ x

( )i pφ x

( )ˆ ( ) ( )i p i pFFT=φ ξ φ x

( )1 1
1 1

ˆˆ ˆˆ( ) ( ) : ( ) ; 0, and ( ) 0i p p i p i p
n nsym+ +
+ +∇ = ∀ ≠ ∇ =v ξ Γ ξ φ ξ ξ v 0

( )1 1 1
1 1

ˆ( ) ( )i p i p
n nFFT+ − +
+ +∇ = ∇v x v ξ

(H. Moulinec and P. Suquet, 1998)
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Microstructure Representation and Discretization

The input to the CPFFT simulator is pixelized image with orientation 
parameters associated with each pixel (or voxel for 3D).
Regular grids with N1xN2 (for 2D) pixels or N1xN2xN3 (for 3D) 
voxels are the discretization of the image (bitmap image).
The ith coordinate component of real points (pixel or voxel) in real 
space:

The ith coordinate component of frequency points in Fourier space: 

0, ,2 , ,( 1)i i i
i i

i i i

L L Lx N
N N N

= −… iL : length of the microstructure in the ith direction

iN : Number of points in the ith direction

1 , 1, ,
2

n i
i i

i

N n n N
L

ξ ⎛ ⎞= − + =⎜ ⎟
⎝ ⎠

… 1 1 , 1, ,
2

n i
i i

i

N n n N
L

ξ +⎛ ⎞= − + =⎜ ⎟
⎝ ⎠

…Ni: even Ni: odd

In order to take advantage of FFT, the point number in each direction should 
be taken to be the integer power of 2.

PT1: coord(1), coord(2), coord(3), orient(1), orient(2), orient(3)
PT2: coord(1), coord(2), coord(3), orient(1), orient(2), orient(3)...

Input format
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Geometric and Crystallographic Texture Evolution

The material grid in the real space should be updated after 
deformation through:

The computational grid after deformation should stay regular:

For convenience, the deformed material grid is usually approximately 
assumed to be coincident with the regular computation grid (single-
grid simplification):

The grain orientation is rotated according to the total spin tensor:

( )( ) ( ) dp p p p p t= + ⋅ +x X X L X v X

( )( ) dc c ct= +x X I L X

( ) ( ) ( ) dslip t⎡ ⎤= + −⎣ ⎦ω x Ω ω x ω x
1

( ) ( ) ( ),
sN

slip α α

α

γ
=

=∑ω x β x x 0( ) ( )antisymα α=β x S

p c=x x
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Plane Strain Example
Example: A FCC aluminum microstructure containing 64 grains (with 
random orientation) discretized by 16x16x16 voxels for CPFFT and 
16x16x16 elements for CPFEM. 
Random initial texture.
Elastic constants: C11=110GPa, C12=59GPa, and C44=26GPa.

Material parameters:
Applied velocity gradient: plane strain:

110< > 111< >

Y

X

Y

X

0 1 0 1 047, 86, 550, 16, 1τ τ θ θ γ= = = = =

3

0 0 0
10 0 1 0

0 0 1

−

⎡ ⎤
⎢ ⎥= ∇ = × ⎢ ⎥
⎢ ⎥−⎣ ⎦

L V

71

1

0
1

( ) : ( )( ) ( )
( ) ( )

s

n
N

p
s g g

αα α

α α
α

γ

−

=

⎛ ⎞⊗ ⎜ ⎟=
⎜ ⎟
⎝ ⎠

∑
m x σ xm x m xM
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Micromechanical Response
Strain, plastic strain, stress fields, and texture (single grid):

CVPFFT CEPFFT CPFEM

strain

plastic 
strain

stress
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110< > 111< >

Y

X

Y

X

110< > 111< >

Y

X

Y

X

110< > 111< >

Y

X

Y

Xtexture
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8x8x8
16x16x16
32x32x32
64x64x64

Homogenized Mechanical Response

1

1

e- e
e

i i

iδ
+

+=

1/2 1/22 21 1

11

ˆdiv( ) ( )
e=

ˆ ( )

i i

ii

+ +

++
=

σ ξ σ ξ

σ 0σ

i
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Pixel
number 
per side

Equilibrium 
error

8 1.339737e-03

16 6.971389e-04

32 3.562514e-04

64 1.789642e-04

CEPFFT
CPFEM

Elasto-plastic response

CEPFFT
CVPFFT
CPFEM

effective stress – strain curve of the microstructure

Error analysis
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Convergence with Resolution
An example of the same microstructure discretized by 32x32x32 
voxels is also conducted to show the convergence with finer gird.

CEPFFT-16P
CEPFFT-32P

CEPFFT-16P

110< > 111< >

Y

X

Y

X

CEPFFT-32P

110< > 111< >

Y

X

Y

X
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CEPFFT-16P

CEPFFT-32P

Total strain Plastic strain Stress
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Multigrid Strategy

The strain related fields are computed through FFT on computation 
grid. 
The stress related fields are updated according constitutive model on 
material grids. 

Material Grid

Real velocity grad

Real stress

Real polarization

Computation Grid

Real polarization

FFT polarization

FFT velocity grad

Real velocity grad

Constitutive        model

FFT

Green        operator

invFFT

, ,1
( ) ( ) ( )A a a

i j p p i j ca
v N v

=
=∑x x x

1

1( ) ( ) ( )
( )

K k a k k
ij c p p ij pk

c

m N
m

φ φ
=

= ∑x x x
x

Real strain rate

75

(N. Lahellec, J.C. Michel, H. Moulinec and P. Suquet, 2001)
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Mechanical Response and Texture
Effective stress-strain response and orientation distribution predicted 
by CEPFFT.

Single-grid

1 1 0< > 1 1 1< >

Y

X

Y

X

Multi-grid

1 1 0< > 1 1 1< >

Y

X

Y

XSingle-grid
Multi-grid
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Total strain Plastic strain stress
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A Fatigue Example

Stress – strain response in the z-direction under cyclic loading. 

77

CEPFFT
CPFEM

The same IN100 superalloy as used in the FIPs study.

1 21 1

1 2
1 2( ) ( )

s

n n
N

p
t

gn n
D D D D

α α α α α
λ λ λ λ λα α

α α α α
α λ λ λ λ

τ χ τ χ
γ γ

− −⎡ ⎤− − −⎢ ⎥= ⊗ +
⎢ ⎥
⎣ ⎦

∑M m x m x
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The distribution of FIPs among grains. maxP means the maximum 
FIP of an individual grain and aveP means the average value of the 
FIP in a grain.

Distribution of Grain Level FIPs

78

(a) CEPFFT, 16x16x16 voxels

(d) CPFEM, 16x16x16 elements

(b) CEPFFT, 32x32x32 voxels

The FIPs predicted by 
CEPFFT are more spread than 

CPFEM. 
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Contour plots of FIPs over the microstructure.

CEPFFT 16P

CPFEM 16E

CEPFFT 32P

Fields of FIPs

Pcyc PFS Pmps
79
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C
om

pu
ta

tio
n 

tim
e 

(s
)

1

10

100

1000

10000

100000

Computation Efficiency
Fatigue: 
1 complete loop, δ<10-4

C
om

pu
ta

tio
n 

tim
e 

(s
)

1‐Processor, 
CEPFFT, 
16x16x16‐Pixel

60‐Processors, 
CEPFFT, 
16x16x16‐Pixel

1‐Processor, 
CEPFFT,
32x32x32Pixel

240‐Processor,
CEPFFT, 
32x32x32Pixel

 1‐Processor, 
CPFEM,
16x16x16Element

240‐Processor,
CPFEM,
16x16x16Element

164 5 1309 17 12687 154

554 16 4385 57 29026 348
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1

10

100

1000

10000

100000

Plane strain: 
Strain=0.1, δ<10-4
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Outline

Introduction and motivation

Uncertainty quantification at a single material point

Investigating mechanical response variability of single-phase 

polycrystalline microstructures

Investigating variability of fatigue indicator parameters of two-

phase nickel-based superalloy microstructures

Uncertainty quantification of multiscale deformation process

An efficient image-based method for modeling the elasto-viscoplastic

behavior of realistic polycrystalline microstructures

Conclusion and future research

81
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Conclusion

Model reduction tools are developed to build the stochastic input 
based on a given dataset of random microstructures.

Physics-based deterministic simulators are developed to evaluate 
material properties/responses according to underlying 
microstructures.

Variability of material properties/responses induced by microstructure 
variation is studied. The uncertainty quantification is performed for 
microstructures at a single material point and for an entire workpiece, 
respectively.
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Multiscale Modeling of Superalloy Systems

Initial and boundary conditions 
(e.g. Die shape)

Topology Particle size/volume fraction
Macroscale uncertainties Mesoscale uncertainties Microscale uncertainties

Two-phase features

Dislocation configuration

Location-specific  microstructures Particle shape

Orientation

Process parameters:
• Temperature
• Strain rate
• etc. Parameters: APB energy, etc.Model Parameters: CRSS, etc.

Grain structure Dislocation and precipitatesWorkpiece

83



Materials Process Design and Control Laboratory
Cornell University

Discrete Dislocation Dynamics in Superalloys
rm=200b, APB energy density=200 mJ/m2, volume fraction =10%.

(a) (b)

Orowan loop

Orowan island

Dislocations in the nickel-base supperalloy containing large particles. (a) Simulated dislocation 
configuration interacting with precipitates having large radius (200b) in current 3D DD 

framework. (b) Simulated dislocation configuration in 2D DD framework (Mohles, 2004).

84

Future focus: massive dislocation dynamics in precipitation hardened alloys. 
Multiscale linking.
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Uncertainty Quantification with Realistic Polycrystalline Microstructures

Introduce realistic polycrystalline microstructures into uncertainty 
quantification.
Provide more reliable prediction to material properties. 
Account for higher order spatial correlation of the microstructure.
Efficient physics-based deterministic solver: CEPFFT.
Stochastic microstructure input:

Pixelized models
• Dimensionality depends on resolution
• Need preprocessing on input data
• Sampling of new samples

Statistical features
• Physical constraints
• Microstructure reconstruction

85



Materials Process Design and Control Laboratory
Cornell University

A Preliminary Example
Grain size distribution: Lognormal distribution.

Mean grain size (diameter) = 0.1457
Standard deviation = 0.0437
Grain number = 60
Assume spherical/round grains

Random crystallographic texture generation.
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110 111

Random 
deformation 

process

110 111 110 111

1 2 3

1 0 0 0 1 0 0 1 0
0 1 0 1 0 0 1 0 0
0 0 0 0 0 0 0 0 0

α α α
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − + + −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

L

( )1 2 3, , ~ U 0.001,0.001α α α −

t=300s

500 samples

32x32 pixels

Deterministic solver: 
CEPFFT
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Mixture of PPCA
The mixture of PPCA (MoPPCA) is a combination of local PPCAs for the 
data that is approximately piece-wise linear. 
Two steps (the two steps are interactive):

A partition of data into classes.
Fitting local PPCA models within each class.

The overall model distribution:
Local PPCA model: The data y is generated by a linear combination of latent 
variables z:

An iterative EM algorithm can be designed to find the optimization of all 
model parameters: 
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1
( ) ( | )

M

j
j

p p jπ
=

=∑y y

• Generation of new sample     requires the random choice of a local model 
according to      , followed by sampling as in single PPCA. jπ

y

= + +y Wz μ ε
~ ( , )Nz 0 I 2~ ( , )N σε 0 I: mean of the data model

2, , ,j j j jπ σμ W

• Two ways to generate new data samples in PPCA:
Generate from the marginal distribution of data y directly:

Generate from both the distribution of latent variable z and noise     :

• Determination of intrinsic dimension: Maximum likelihood estimation. 

( ) ( | , )ML MLp N=y y μ C

( ) ( | , )p N=z z 0 I

Sampling from high-dimensional data space

Sampling from low-dimensional latent space2( ) ( , )MLp N σ=ε 0 I

μ

ε
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Variability of Mechanical Responses

88

Strain 
mean 

Strain 
STD

Stress 
mean 

Stress 
STD

Sampling from 
latent space

Sampling from 
data space

High
Low

Equivalent stress-strain 
response with error bars.

The number of PPCA 
components is chosen to be 3.

The ML estimation of the 
dimension of the latent space 
is 3 .
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Advanced Methodology, Property Prediction & Material Design

Stochastic Multiscale Analysis (Training):

A new set of 
structural and 
process information

Database 
obtained through 
analysis process

Distributions 
of properties 
of interest

Model reduction 
and classification Probabilistic Prediction

Bayesian inference, 
Regression, interpolation

PCA, Manifold 
learning, SVM, x-mean

Desired properties 
and initial information

Database 
obtained through 
analysis process

Proposed 
process strategy,
microstructure

classification Design and feedback

Bayesian regression, 
interpolation, optimization.

PCA, Manifold 
learning, SVM, x-mean

Design (Optimizing):

Stochastic multiscale solver (SPDEs)

Parameters
(si,θi,γi)

Compute material 
response/propertiesReduce input 

complexity

Material ProcessingInitial Structures Property Variability

Model reduction 
techniques

Crystal 
plasticity 

Dislocation 
dynamics

Molecular 
dynamics
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Prediction:

SPDE solver: Bayesian regression, HDMR+ASGC. 
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Thank you very much!
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